Challenges of parallel processor design

M. Forsell and V. Leppédnen and M. Penttonen
May 12,2009 21:48

Abstract

While processor speeds have grown, also the gap between the speed of processing
and the speed of accessing data has grown. Therefore the speed of the processor
cannot be used. As a reaction, processor industry has started to build more pro-
cessor cores on a chip, but there is no easy way to utilize multiple processors. In
this work we study alternative multicore processor designs that could efficiently
run parallel programs.

1 What Moore said?

Very soon after the success story of microelectronics had started, G. Moore published
a forecast [13] that was later to be called the “Moore’s law”. By development from
year 1959, when a circuit consisted of one electronic component, to year 1965, when
50 components could be packed on a circuit, he bravely forecast that in 1975 one could
perhaps pack economically as much as 65000 component. In other words, in 16 years
the packing density would grow 2'6-fold. In 2007 the packing density was almost 5
billions, or about 232-fold. Hence, in 48 years the packing density did not grow 248
fold but still the “law” can be stated in a milder form: “packing density doubles every
18 months”.

In recent years the “Moore’s law” got more popular formulations like “the power
of pc’s doubles every 18 months” or alike. Similar “laws” have been presented for
the growth of the bandwidth of data communication. Can we trust on such “laws”?
Even if we can always hope for the revolutionary inventions by scientists, such as
quantum computation, we must be aware of the physical constraints of our world. An
electronic component cannot become smaller than an atom (or an elementary particle).
To transport information from one place to another needs some time. At very high
packing density and high clock rate, heat production becomes a problem. Electrical
wires on circuits cannot be radically thinner than what we have got now, or quantum
effects start to appear.

The current packing density already has lead the processor industry to a problematic
situation: How to get optimal computational power from the chip? How to get data at
right time at right place so that the computation is not delayed by latencies? Overheads
of the memories and the time of moving data over physical distances imply latencies
that are about a hundred times more than the time required by the instruction itself.

This has lead to complicated caching, which should be called art rather than science.
As computation depends on data, also compilation of programs has become art, when
one tries to guess the branch, how the computation continues, in order to start fetching
data as early as possible. It has been possible to build more and more components on
a chip, but it is difficult to speed up a single computation. The computer industry has
kind of “raised up hands” by starting to build multiple processor “cores” on one chip
without clearly seeing, how to use them.

In principle multicore chips solve the “von Neumann bottleneck™ problem, as all
data need not be processed at the same processor core. The big new problem is that can
we utilize multiple cores. If there are two or four cores, we can give detailed instruc-
tions, what to do in each core. But if the number of cores grows, can the programmer
use them optimally? Anyway, programming is difficult enough without new factors to
optimize. If the multiple cores are not used in a systematic and efficient way, one can
easily end up with a program that is slower than the sequential unicore program.

2 Theoretical basis of general purpose parallel comput-
ing

The advantage of high processing speed is lost, if the data to be processed is not present.
All data cannot always be present and due to distance and hardware overheads, fetch-
ing data takes enormous time in comparison with processing speed. Without losing the
generality of the computation, we cannot assume that at successive steps of computa-
tion only “local” data is used. In the worst case, each sequential step of the computation
could need data from the “remotest” part of the memory. One can perhaps predict, what
data the next few instructions need and prefetch them to a cache, but the bigger the la-
tency gap grows, the harder is the prediction. This is a hard fact: it is useless to just
speedup a processor, if we cannot guarantee that it can do something useful.

Parallel processing offers a solution. If there are many independent threads of com-
putation available, instead of waiting for data the processor can move (even literally)
to process another thread. While other threads are processed, the waited data hopefully
comes, and the processing of the waiting thread can be continued.

However, some questions rise:

1. Can we find enough independent parallel threads in the computation so that la-
tency time can be meaningfully used?

2. Can the data communication machinery of the computer serve all parallel threads?
3. Can the swapping between threads be implemented so that efficiency is not lost?

4. Can all this be done so that programming does not become more difficult than
before?

The first question is algorithmic and the second one concerns the hardware architecture.
The last two questions are not theoretically as fundamental, but the idea of parallel
threads lives or dies depending on how successful we are at these questions. In short,

the condition of a successful model of computation is that algorithm design should
be possible at a high level of abstraction, and still algorithms can be automatically
compiled to programs that run efficiently on hardware.

The theory of parallel algorithms, in particular the PRAM (Parallel Random Access
Machines), see [9] answers positively to the first question. A lot of parallelism can be
found in computational tasks. It also answers quite positively to the last question. Even
programming for the PRAM model is different from programming for the sequential
RAM model, it is not more difficult as soon as we can get rid of the fixed idea of
sequential programming.

Questions 2 and 3 are more difficult to answer. Based on the analysis [2] of the
situation in nineties, the PRAM model was deemed to be unrealistic. PRAM assumes
that an unbounded number of processors can run synchronously from instruction to
instruction, even if some instructions require data from an arbitrary memory location,
and many processors may be writing to the same memory location. Parallel proces-
sors cannot get rid of the latencies of the physical world, but as it was hinted above,
parallelism offers a way to use the waiting time meaningfully. The idea of parallel
slackness was proposed by Valiant [14]. If the parallel algorithm uses sp virtual pro-
cessors, where s is the slackness factor and p is the number of physical processors,
each virtual processor can use only fraction 1/s of the physical processor time, i.e.
the computation of the virtual processor proceeds every s’th step of time. If s is not
smaller than the latency [, the computation of the virtual processor proceeds at full
speed with respect to the amount of physical processors. In other words, the slackness
factor can be seen to decrease the clockrate of a virtual processor executing a thread by
the factor s compared to the clockrate of the physical processor (and thus making the
processor-memory speed gap to vanish).

In principle, the slackness solves the latency problem, but it implies a demanding
data communication problem. All the time all p processors may want to read data
anywhere in the computer, and each read instruction lives for the slackness time s in
the routing machinery. Hence, there may be ps data packets in the internal network of
the computer. As processors have nonzero volume, the distances grow at least with the
qubic root of the number of processors, i.e. s > [€ /p. In practice, the topology and
many other properties of the network determine, how much slackness is needed, but
the bandwidth requirement ps is unavoidable. In 2-dimensional sparse torus [12], for
example, p processors are connected by a p X p mesh (or torus), where the processors
are on the diagonal. In this structure the diameter of the network is p, the latency is 2p
and latency s = 2p can be used, because the bandwidth of the network is 2p?.

3 Parallel processor designs

In order to keep the programmer’s model of computation as simple as possible, we
want to see the parallel computer as in Figure 1

A vector compaction program (eliminating zero elements) for this machine would
look like

memory

Figure 1: Parallel Random Access Machine

proc compact (A)
for 1i=0..n-1 pardo

if A[i]=0 then C[i]=0 else C[i]=1
E=prefix-sum(C)
for 1i=0..n-1 pardo

if A[i]1<>0 then BI[E[i]]=A[1i]
return B

In this program, function prefix—sum (C) computes vector E where E[i]=C[0]+C[1]+
...+C[i]. If we assume that pre £ i x—sum can be computed in time O(1), also compact
can be computed in time O(1).

In Figure 1, there is a dotted box around the processors, hinting that those proces-
sors should be built on a chip. We are now taking a closer look, how could such a
multiprocessor chip be built.

3.1 Paraleap - PRAM on Chip

Vishkin’s team [15] has built a processor, whose simplified schematic is shown in Fig-
ure 3.1. Master Thread Control Unit (MTCU) has a central role in scheduling the
threads. Whenever there are independent parallel threads waiting for being processed,
they ask their turn from MTCU. Whenever a thread is completed at a processor P, it
is reported to MTCS. In the current version of the Paraleap, the number of processors,
or more exactly Thread Control Units (TCU), is 64. However, TCU’s are not fully
indendent but clusters of 16 TCU’s share some functional units.

Prefix Sum Unit (PSU) is another important component in Paraleap. It can be used
in programs for such purposes as in the vector compaction program. However, the most
important usage is the scheduling of threads to TCU’s. When TCU’s run and complete
threads in parallel, PSU calculates, which is the next thread to be started.

Processors are connected to the shared memory by the internal network, which is
a mesh of trees in Paraleap. There are 8 caches between the network and the main
memory. Processors share a set of Registers (Reg).

I =

MTCU

Figure 2: Structure of the Paraleap processor

Paraleap has been implemented on Field Programmable Gate Array (FPGA) of
75 MHz clock rate, and implementation on an 800 MHz ASIC (Application Specific
Integrated Circuit) is going on. Vishkin et al. [15] claim that on a test set of 8 progams
(such as binary tree search, vector compaction, matrix multiplication, or convolution),
Paraleap is 1.9 to 9 times faster than a 2.6 GHz AMD Opteron processor. They expect
that in near future the number of TCU’s on a chip could grow to 1024.

3.2 Eclipse

In an on-going Finnish effort [4], a full architectural realization (so called Eclipse
framework) of a strong PRAM model on a distributed memory chip multiprocessor
(CMP) is being investigated. The main idea has been to provide enough communica-
tion bandwidth to be able to solve the routing problem described in Section 2 with a
high probability, to use interleaved multithreading to hide the latency of the distributed
memory system, and to synchronize the execution of emulated PRAM steps by an ef-
ficient wave synchronization technique. The communication solutions applied so far
have been output buffered acyclic sparse mesh and multi mesh networks. See Figure
3.2.

Additional performance boost is sought by integrating instruction-level parallelism
seamlessly with multithreading by chaining of functional units, which allows exploita-
tion of virtual instruction-level parallelism even if executed threads are strictly sequen-
tial. Concurrent memory access to a single memory location is implemented with step
caches that reduce the number of references per location to one per processor core. The
data of pending multioperations are kept in the scratchpads, and active memory units
are used to implement multiprefix operations [5].

According to recent investigations [7], the silicon area and power consumption

{s

thls
i

]

M| P

]

Fast memory bank Y st
Tors
i
¥
, = Scratchpad
M| P
l ol : 1 |
‘ Pending Pending
s
Reply Data Op Address H rs i Address Address
sk {;']; Thread Thread
— == T S
e e e Data Data
M| P M| P M| P

Figure 3: High-level block diagram of the Eclipse architecture (P=processor, M=data
memory, I=instruction memory, a=active memory, c=step cache, and t=scratchpad
memory).

of such a CMP is roughly comparable to those of contemporary multi-core offerings
with the same number of cores from Intel. Interestingly also the performance/area and
performance/power figures of the strongest PRAM variants have turned out to be the
best. CMP has been investigated by software simulations. Implementation on FPGA is
planned.

3.3 Moving threads

MOTH project studies the realization of a new kind of approach for mapping the com-
puting of an application to MP-SOC architectures [6] (some preliminary ideas appear
in [10, 11]). Instead of moving data read and write requests, we move extremely
lightweight threads between the processor cores. Each processor core is coupled with
memory module and parts of each memory module together form a virtual shared mem-
ory abstraction. Applications are written using a high-level language based on shared
memory. As a consequence of moving threads instead of data we avoid all kinds of
cache coherence problems.

In our architecture, the challenge of having efficient implementation of an applica-
tion reduces to mapping the used data so that the need to move threads is balanced with
respect to the bandwidth of the communication lines. This method also eliminates the
need for separate reply network and introduces a natural way to exploit locality without
sacrificing the synchronicity of the PRAM model.

In the moving threads approach, a multicore system consists of P processor cores
that are connected to each other with some sparse network [10], e.g. with a butterly, a
sparse mesh, a mesh of tree, etc. In traditional approaches, the messages correspond to
read or write requests and replies, whereas in the moving threads approach, a message
moves a thread consisting of a program counter, an id number, and a small set of
registers. The messages in the moving threads approach are a little bit longer, but

respectively there is no need for a network deliver the replies of read requests.

A cache-based access to the memory system is provided via each processor core.
However, each core sees only a unique fraction of the overall memory space, and thus
there are no cache coherence problems and when a thread makes a reference out of the
scope of the core’s memory area, the referencing thread must be moved to the core that
can access that part of the main memory. Besides a cache to access the data memory,
each core also has another cache for program instructions.

Each of the cores has O(s) threads to execute, and the threads are independent of
each other — i.e. the core can take any of them and advance its execution. By taking
an instruction cyclically from each thread, the core can wait for memory access taking
a long time (and even tolerate the delays caused by moving the threads). The key to
hide the memory (as well as network and other) delayes is that the average number
of threads s per core must be higher than the expected delay of executing a single
instruction from any thread.

The less there is need to move the threads, the smaller can the slackness factor
be. Thus, although the moving threads approach does not require it, it might be wise
to allow careful design of the allocation of actual data used in the program, and thus
allow the programmer to balance the work-loads and to minimize the movement of
data. We can e.g. assume that the program’s address space is statically distributed into
the memories accessible via cache modules attached to each core. The advantage of
this is that the programmer can have influence on the physical allocation of data — and
consequently on the physical allocation of the work of each thread on the processor-
storage modules.

For the creation and termination of threads in the programming language level, we
take the approach of supporting only implicit termination as well as creation of threads.
We do not consider Java-like explicit declaration of threads as first-class objects as a
feasible solution. In practice, we have a parallel loop-like construction which creates
threads with logical id-numbers in the interval [low,high] and each threads is running
the same program block. The code in the program block can of course depend on the
logical processor id-number. The id-numbers are program controlled, but the runtime
system expects them to be unique at anytime during the program execution. We also
consider supporting nested thread creations. Each thread faces an implict termination
at the end of the program block (which was defined in the thread creation statement).

4 Conclusions

In this section we discuss, what is common and what is different in the presented three
parallel processor designs. The first difference is in the degree of existence and expe-
rience. Paraleap is moving from FPGA stage to ASIC stage and some programming
experience has already been collected. Eclipse has not yet reached the hardware stage,
and moving threads design is still quite sketchy. They all share the view that processor
must support parallel processing, otherwise the latency gap prevents efficiency.
Paraleap requires long, independent parallel threads to run efficiently. Programmer
must be aware of that and therefore programming is more difficult than just writing
PRAM algorithms. Eclipse and moving threads processor are synchronous and allow

more fine-grained parallel processing, which is easier for the programmer. This is
theoretical reasoning. Currently the difficulty of Paraleap programming is dominated
by undeveloped programming environment, which is less developed for Eclipse and
nonexistent for moving threads.

In all designs, a part of the chip surface is dedicated for the internal network. Par-
aleap uses a mesh of trees for this purpose, while we believe in sparse mesh networks,
due to scalability. There is no proof yet, which is better for this purpose.

In sequencial programming caches are a central tool to fight against latency, while
cache coherence is an unsolvable problem. In parallel processing caches are just one
useful trick. In Paraleap and in Eclipse, caches are between the internal network and the
memory. Due to slackness, coherence is not a problem. In moving threads processor,
cache must be next to each core, but due to them moving thread, coherence is not a
problem.

Each of the designs have their own pluses and minuses. In Paraleap the prefix sum
unit has a very central role in in thread scheduling. It is sequential and said to be fast
enough. Is it scalable? Eclipse is apt for instruction level optimization and it provides
multioperations used in some PRAM models. But how will it work as hardware? An
interesting property of moving threads processor is that it needs only one-way traffic,
but packets containing register environment are bigger. How do they balance?

A lot of research is needed to clarify these design questions. Parallel processor
design is taking its first steps, while there is an enormous investment in sequencial
processing. A funny proof of the need of rethinking is the CUDA project [3]: A graph-
ics processor, when used as a parallel processor, is much more efficient than the main
processor of the computer. What if we designed parallel processors for computing?

References

[1] P. Bach, M. Braun, A. Formella, J. Friedrich, T. Grun, C. Lichtenau. “Building
the 4 processor SB-PRAM prototype.” In Proc. of the 30th Hawaii International
Conference on System Sciences: Advanced Technology Track - Vol. 5, 1997.

[2] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E. Santos,
R. Subramonian, T. von Eicken. “LogP: Towards a realistic model of parallel
computation.” In Principles Practice of Parallel Programming, pp 1-12, 1993.

[3] http://www.nvidia.com/cuda

[4] M. Forsell. “A Scalable High-Performance Computing Solution for Network on
Chips.” IEEE Micro 22(5) (September-October 2002), pp. 46-55.

[5] M. Forsell. “Realizing Multioperations for Step Cached MP-SOCs.” In Proc.
SOC’06, November 14-16, 2006, Tampere, pp. 77-82.

[6] M. Forsell and V. Leppédnen. “Moving Threads: A Non-Conventional Approach
for Mapping Computation to MP-SOC.” In Proceedings of the 2007 International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’07), pages 232-238, Jun 2007.

[7] M. Forsell, J. Roivainen. “Performance, Area and Power Trade-Offs in Mesh-
based Emulated Shared Memory CMP Architectures.” In Proc. PDPTA’08, Jul
14-17, 2008.

[8] S. Fortune, J. Wyllie. “Parallelism in Random Access Machines”. In Proc. 10th
ACM Symposium on Theory of Computing, pp 114-118, 1978.

[9] J. J’aj’a. An Introduction to Parallel Algorithms. Addison Wesley, 1992.

[10] V. Leppénen: Studies on the Realization of PRAM, PhD thesis, University of
Turku, Department of Computer Science, TUCS Dissertation 3, November, 1996.

[11] V. Leppédnen. “Balanced PRAM Simulations via Moving Threads and Hashing.”
Journal of Universal Computer Science, 4:8, 675-689, 1998.

[12] V. Leppdnen, M. Penttonen. Sparse Optical Torus. AMICT 07 proceedings.

[13] G.E. Moore. “Cramming more components onto integrated circuits”. Electronics
38(8), 1965.

[14] L.G. Valiant. “General Purpose Parallel Architectures”. In Handbook of Theoret-
ical Computer Science, Ed. Jan van Leeuwen, Elsevier and MIT Press, volume 1.
Elsevier Science, 1990.

[15] X. Wen, U. Vishkin. “FPGA-based prototype of an PRAM-On-Chip processor.”
Computer Frontiers 2008, May 5-7, 2008.

