
GetTCP+: Performance Monitoring System
at Transport Layer

Aleksandr Sannikov, Olga Bogoiavlenskaia, Iurii Bogoiavlenskii

Department of Computer Science

Petrozavodsk State University

Olga Bogoiavlenskaia 29.08.2013 1 / 35

Introduction

Data communication performance monitoring
Network design
Network development
Network administration

End-to-end path performance is quite necessary for wide class of
application from LAN to GRID.

Olga Bogoiavlenskaia 29.08.2013 2 / 35

Architecture

GetTCP+: Common Points

Aim:

Development of monitoring system that should be able to provide
characteristics of the end-to-end path performance, both general
(flow level) and detailed (segment level).

Requirements:

High performance and low latency
Flow filtering and clustering flows by destination
Support of protocol-specific features and extensions
Easy porting to modern kernel versions
Real-time flow monitoring
Providing of all necessary for end user information about flows

Olga Bogoiavlenskaia 29.08.2013 3 / 35

Architecture

GetTCP

Provides mechanisms
for recording events in
Linux kernel network
stack and transmits
data recorded to the
user space
Operates in real-time
without data losses and
has no influence to the
work the of the network
stack

Olga Bogoiavlenskaia 29.08.2013 4 / 35

Architecture

GetTCP+

Olga Bogoiavlenskaia 29.08.2013 5 / 35

Storage subsystem

Storage subsystem

Operating Data Manager - processing of incoming data with high
performance
Storage - long-term data storing
Analyzer Interface - data interchange with external tools

Processing data have several specific points:

”Write-once” and ”Read-only” data
Sequential data access
Processing by big slices
Old data are less important

Olga Bogoiavlenskaia 29.08.2013 6 / 35

Storage subsystem

Storage organization
Storage implementation is based on file system objects.
Flows are grouped by destination
Storing of common information for each flow and verbose
information for each segment

Olga Bogoiavlenskaia 29.08.2013 7 / 35

Storage subsystem

Storage data
Start End N Lost cRTT W MSS RTTn
1321882813612897 1321882868341552 738881 250 73229 359 1448 19249
1321882898261708 1321882932915678 741536 278 84433 360 1448 18946
1321882971857777 1321883016067644 741536 318 66094 331 1448 18879
1321883037896449 1321883087628256 739916 269 73361 360 1448 19894
1321883120172231 1321883163385798 739717 281 60854 373 1448 19551
1321883182680274 1321883224470498 739220 259 66542 363 1448 19867
1321883243410327 1321883263863716 673184 275 22489 343 1448 17884

Table : Storage data

RecType Timestamp nsegs lostout window RTT
0 3968509408 1 0 10 3804
0 3968621408 1 0 10 3769
0 3968621408 1 0 10 3769
0 3968621408 1 0 11 4052
0 3968621408 1 0 12 3994
0 3968621408 1 0 12 4204
0 3968621408 1 0 13 4073
0 3968621408 1 0 14 3658
0 3968621408 1 0 14 3782

Table : Flow cache file

Olga Bogoiavlenskaia 29.08.2013 8 / 35

Tracepoints

Using the Linux Kernel Tracepoints

Linux Kernel Tracepoints present the main mechanism of event tracing
in GetTCP+.

A tracepoint placed in the code provides a hook to call a function
that can be provided at runtime
A tracepoint can be ”on” or ”off” at runtime
They are lightweight hooks that can pass an arbitrary number of
parameters
Handlers can be implemented in kernel module
Less volume of changes of mainline kernel code is necessary
New hooks can be added easily

Olga Bogoiavlenskaia 29.08.2013 9 / 35

Tracepoints

Events connected with flow state

Olga Bogoiavlenskaia 29.08.2013 10 / 35

Tracepoints

Events connected with segment transmission

Olga Bogoiavlenskaia 29.08.2013 11 / 35

TSO

Segmentation Offloading

Segmentation - separation of data block on several segments for
transmission.

GSO – Generic Segmentation Offloading
GRO – Generic Receive Offloading
TSO – TCP Segmentation Offloading

Problem:

Information about Segmentation Offloading is unavailable in user
space.
GetTCP+ provides correct information about offloading.

Olga Bogoiavlenskaia 29.08.2013 12 / 35

TSO

TCP Segment size: real and according to tcpdump

Olga Bogoiavlenskaia 29.08.2013 13 / 35

Filtering

Filtering

Not every flow is important for analysis, especially in the context of the
distributed systems.
Two types of filtering:

By using device
By destination host/subnetwork address (currently IPv4 only)

Filtering is made for every flow and necessity of monitoring is defined
by tcp sock→probed sock field of tcp sock structure.

Olga Bogoiavlenskaia 29.08.2013 14 / 35

Filtering

Olga Bogoiavlenskaia 29.08.2013 15 / 35

Filtering

Olga Bogoiavlenskaia 29.08.2013 16 / 35

Filtering

Olga Bogoiavlenskaia 29.08.2013 17 / 35

Filtering

Olga Bogoiavlenskaia 29.08.2013 18 / 35

Filtering

Olga Bogoiavlenskaia 29.08.2013 19 / 35

Filtering

Olga Bogoiavlenskaia 29.08.2013 20 / 35

Filtering

Filtering by destination host/subnetwork address

Address filtering works by the same way to device filtering.

IP ⇐ (inet sock(tcp sock)→inet daddr);
for current ∈ filtered addresses list do

if (IP & (current→network mask) = current→address) then
tcp sock→probed sock ⇐ True

end
end

If both of filtering types are enabled:

tcp sock→probed sock ⇐ (result of filtering by device) & (result of
filtering by address)

Olga Bogoiavlenskaia 29.08.2013 21 / 35

testing

Testing

GetTCP+ was tested for several network configuration:

high and low throughput
small and relatively large RTT
low and high loss rate

Traffic generator: iperf

constant size of transferred data: 200 mb (exclude load testing)
sequential, disjoint flows in each test
used congestion control algorithm: TCP NewReno

Olga Bogoiavlenskaia 29.08.2013 22 / 35

testing

The Source Host Configuration

Olga Bogoiavlenskaia 29.08.2013 23 / 35

testing

The First Destination Host Configuration

Olga Bogoiavlenskaia 29.08.2013 24 / 35

testing

Debug and Load Testing

Olga Bogoiavlenskaia 29.08.2013 25 / 35

testing

The Second Destination Host Configuration

Olga Bogoiavlenskaia 29.08.2013 26 / 35

testing

Testing in the Local Network

Olga Bogoiavlenskaia 29.08.2013 27 / 35

testing

The Third Destination Host Configuration

Olga Bogoiavlenskaia 29.08.2013 28 / 35

testing

Testing on the Long Route

Olga Bogoiavlenskaia 29.08.2013 29 / 35

testing

The Source Host Configuration for Work with 3G

Olga Bogoiavlenskaia 29.08.2013 30 / 35

testing

Testing into the 3G-Network (256kbit/sec)

Olga Bogoiavlenskaia 29.08.2013 31 / 35

testing

Testing into the 3G-Network (64kbit/sec)

Olga Bogoiavlenskaia 29.08.2013 32 / 35

latency

Delays inspired by GetTCP+
Whole system shouldn’t produce essential overhead. So the delays
inspired by GetTCP+ has been estimated.

Ftrace - tracing utility built-in into Linux kernel. It can provide not only
function traces or call graph, but latency measures for specified
functions.

Ftrace latency output
tracer: function_graph
#
CPU DURATION FUNCTION CALLS
| | | | | | |
0) 1.282 us | tcp_ack_event();
0) 0.258 us | tcp_ack_event();
0) 1.187 us | tcp_ack_event();
0) 0.285 us | tcp_ack_event();
0) 0.292 us | tcp_ack_event();
0) 0.898 us | tcp_ack_event();

Olga Bogoiavlenskaia 29.08.2013 33 / 35

latency

Mean delays

tcp ack event handler is invoked for each segment, so it should invoke
low delays. Other handlers are less critical.
Latency measurements were performed on the path from A to B.

Event Handler Mean delay
flow start event tcp start event() 16.904 usec
flow ack event tcp ack event() 0.628 usec
flow retr event tcp retr event() 1.172 usec
flow end event tcp end event() 2.480 usec

Olga Bogoiavlenskaia 29.08.2013 34 / 35

Conclusion

Conclusion

Results:

Prototype of GetTCP+ system was developed
Was provided mechanisms for GetTCP+ control
Support of monitoring on kernel level provides correct and
detailed information
System was tested on parts of real network with different
characteristics

Aims:

Improvement of analytical component
Improvement of external interfaces for various tools
Support of modern networking technologies and new versions
Linux kernels

Olga Bogoiavlenskaia 29.08.2013 35 / 35

	Introduction
	Architecture
	Storage subsystem
	Tracepoints
	TSO
	Filtering
	testing
	latency
	Conclusion

